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C4 Olefin/Paraffin on w-Complexing
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Jong-Nam Kim,"* Soon-Haeng Cho,' and Yong-Taek Lee”

!Separation Process Research Center, Korea Institute of Energy
Research, Yuseong-gu, Daejeon, Korea
*Department of Chemical Engineering, Chungnam National University,
Yuseong-gu, Daejeon, Korea

ABSTRACT

Ag™ ion impregnated clay as a newly developed adsorbent was studied
for 1-butene separation from n-butane. Equilibrium adsorption isotherms
of pure components were measured at the temperature range from 25°C to
100°C and pressure up to 1200 mmHg. Experimental data of n-butane and
1-butene were correlated with various isotherm models. The best selecti-
vity was shown at 80°C. Equilibrium capacities for 1-butene and n-butane
at 80°C and 900 mmHg were 0.92 and 0.31 mmol/g, respectively.
The average heats of adsorption for n-butane and 1-butene were found
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to be 6.6 and 13.3 kcal/mol, respectively. Diffusion of 1-butene and
n-butane on this sorbent was fast, with 100% uptake reached within
15 min. The IAS model with Toth isotherm for pure component gave
the best prediction results for both the n-butane and 1-butene compared
to the other models used in the study. Binary adsorption equilibrium
was well predicted by the Ideal Adsorbed Solution (IAS) model. The
equilibrium adsorption ratio of 1-butene/n-butane in binary system was
14.87 and its selectivity was 6.71 at 80°C and 900 mmHg, when the
mole fraction of 1-butene in gas phase was 0.689. Experimental break-
through curves were well predicted by a mathematical model, and
the curves were steep enough to separate 1-butene from n-butane.
Thus, it can be noted that Ag™ ion impregnated clay can be applied to
the adsorptive separation of C, olefin/paraffin.

Key Words: C, Olefin/paraffin separation; AgNO;/clay; Equilibrium
capacity; Heat of adsorption; Binary adsorption equilibrium; Break-
through.

INTRODUCTION

Olefin/paraffin separation represents the most important separation in the
petrochemical processes. Cryogenic distillation has been used for over 60
years for these separations.!"! They remain the most energy-intensive distilla-
tions because of the close relative volatilities

Residual stream of methyl tertiary butyl ether (MTBE) process contains
many important chemicals. This stream mainly consists of 1-butene, 2-butene,
and n-butane. Butene-1 is an important chemical intermediate used in
the manufacture of a variety of chemical products, i.e., linear low density
polyethylene (LLDPE), high density polyethylene (HDPE), polypropylene
(PP), and synthetic lubricants. The C, components in this stream cannot be
easily separated by conventional distillation because of the close proximity
of the boiling points. The superfractination, which is the existing technique
to separate C4 components, is a complex process and its energy consumption
is high. Even though the hybrid system that consists of simulated moving
bed and distillation tower was applied as an advanced technique, it was also
a complex and energy intensive process.>!

Currently, a number of alternative methods have been investigated for
the olefin /paraffin separation.'*! The most attractive one is adsorption. Since
satisfactory selectivity for olefin/paraffin has not been shown on commercial
sorbents, i.e., zeolite SA and 13X, the new sorbents using w-complexing
agents have generated considerable research interest.”! The use of complex
ing agent can be classified into three forms: solution,!® solid adsorbent, and
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C, Olefin/Paraffin on m-Complexing Adsorbent 1367

membrane.!”’ The advantage of chemical bond by m-complexation is that
the bond formed is stronger than that by van der Waals force alone, so it is
possible to achieve high selectivity and weak enough to be broken by simple
engineering operation such as raising temperature or decreasing the pressure.
These advantages have been highlighted through a molecular orbital study of
the selective adsorption on Ag - and Cu™-exchanged resins.'**! 77-Complexation
pertains to the main-group (d-block) transition metals on the periodic
table. These metals or their ions can form a o-bond to carbon and the unique
characteristics of the d orbital in these metals or ions can form bonds with
olefins by backdonation."'”!

More recently, a number of 7-complexation adsorbents have been deve-
loped for olefin /paraffin separations.!'' I These include Ag™-exchanged resins
and AgNO3/SiO,. Other types as a substrate for 7-complexation sorbents are
pillared clays. These are a new class of aluminosilicate material, which have
attracted increasing interest for both adsorption and catalysis because of their
unique structural and chemical properties.!'>'®! These 7-complexation sorbents
provided excellent results for olefin separation from paraffin. But, these
researches were limited to C, and C; hydrocarbon separation, i.e., ethylene/
ethane and propylene/propane. Even though Padin et al.l"® researched to separ-
ate 1-butene/n-butane on AgNO;/SiO, of which weight ratio was 1.08, and it
had a good selective adsorption ratio of 8.33 for 1-butene/butane at 70°C and
1 atm, the study was limited to adsorption characteristics of C4 pure components,
not binary system and dynamics in packed column. Thus, in this work, we have
studied the feasibility of the 7-complexation sorbents, AgNOs/clay, for the sep-
aration of 1-butene from n-butane. Pure component isotherms were measured at
various temperature range on Ag" impregnated clay as a newly developed adsor-
bent. To make sure that it has enough selectivity of 1-butene/n-butane, binary
experiment was carried out at 80°C and 900 mmHg. The dynamics in packed
column with AgNOs/clay was studied in order to develop adsorption process
for separation of C, olefin/paraffin.

EXPERIMENTAL SECTION

Newly developed adsorbent for C, olefin/paraffin separation is
synthesized by effective dispersion of Ag" on granular type clay. AgNO;
is dispersed on a clay surface using the incipient wetness technique. That is,
just the same amount of AgNOj solution as the pore volume of substrate
was contacted with the adsorbent during the impregnation stage. The clay
substrate used in this study was granular form (particle size of 8—12 mesh).
AgNOj3/clay at a weight ratio of 0.4 g/g was the sorbent utilized in this work.
Table 1 shows the physical properties of clay substrate and AgNO;/clay.
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Table 1. Physical properties of clay and AgNOs/clay.

Average pore Surface area  Pore volume
Adsorbent diameter (A) (m? /) (em® /2)
Clay substrate 40.33 391.24 0.42
AgNOs/clay 52.19 132.86 0.20

Since Ag* ion impregnated on clay substrate blocks the mouth of micropore,
AgNOs/clay has large pore diameter and smaller surface area and pore
volume than clay substrate. Equilibrium amounts adsorbed of 1-butene and
n-butane were measured at the temperature range from 25°C to 100°C and
pressure up to 1200 mmHg using the volumetric method. Temperature was
controlled +0.5°C by water bath. The schematic diagram of the volumetric
apparatus is shown in Fig. 1. At binary system, gas chromatography was
connected to the apparatus to analyze a composition in reference cell and
sample cell. The binary adsorption equilibrium was measured at 80°C and
900 mmHg. Benedict—Weber—Redlich (BWR) equation of state was used to
calculate the moles in the gas phase, since it showed the better result for the
densities of C, hydrocarbons than other equations of state, i.e., Redlich—
Kwong (R-K), Soave—Redlich—Kwong (S—R-K) and virial."'*?°! Magnetic
suspension balance (MSB) was used to obtain mass transfer coefficient.

The breakthrough test was done in a column of 1in. in I.D. and 30 cm in
length. n-Butane was adsorbed first on AgNOj3/clay column before the break-
through test. The mixed gases of 1-butene and n-butane were used as a feed, of
which composition ratio was 50:50. The feed flow rates were 0.32, 0.64,

vent SC feed
gas

vacuum
pump

/7, water bath

Figure 1. Schematic diagram of the volumetric apparatus.
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and 0.96 L/min controlled by mass flow controller (MFC). The adsorption
pressure was adjusted by a backpressure regulator. The temperature of adsor-
ber was maintained at 80°C by temperature controller (isothermal condition).
The schematic diagram for breakthrough test is shown in Fig. 2.

ISOTHERMS AND MATHEMATICAL MODEL FOR
BREAKTHROUGH

Adsorption Equilibrium

The experimental adsorption equilibrium data were correlated with various
adsorption isotherm models. Table 2 shows the pure component isotherm
models used in this work.!"®'=231 The LRC and Toth models based on the
Langmuir isotherm are empirical equations, and the Dubinin—Astakov (D—A)
model is based on the potential theory."'”*"**! The adsorption of olefin
molecules on AgNO;/clay is the sum of physical adsorption and

FEED

3
DI

MEFC : Mass Flow Controller MFM : Mass Flow Meter
PT : Pressure Indicator TC : Thermocouple

BPR : Back Pressure Regulator ~ SP : Sampling Port

Figure 2. Schematic diagram of breakthrough test apparatus.
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Table 2. 1sotherm model.'821-231

Langmuir _ qsbpp
T=1% bpp
LRC _ asbpp”
T= T ¥ by
Toth g= qsP
(1/k +p)'"
D-A B ok "
q=gsexp| —| Cln—
LAN + UNILAN _ doboP | Gsey 1+ bepe’

T l4byp 25 1+ bepes

Note: Py, saturation pressure obtained by the reduced Kirchoff
equation at temperatures above the normal boiling point and
LAN, Langmuir.

chemisorption. The physical adsorption can be represented by the Langmuir
isotherm. Chemisorption is the result of the reversible reaction.'*! In the
Langmuir + UNILAN (LAN + UNILAN), the first term accounts for physical
adsorption, while the second term represents contribution by chemisorp-
tion.!'® The LAN 4 UNIALN isotherm contains five parameters, and their
values may be obtained from the experimental data. However, certain con-
straints must be imposed on some of the parameters in order for them to
have physical meaning. The values of the Langmuir constant are approxi-
mately equal between olefin and paraffin with the same carbon number. There-
fore, LAN 4+ UNIALN was used to fit the data on w-complexation with
imposed values or constraints on ggp,, and by, leaving three parameters (g,
b, and s) as the true fitting parameters.''>!%-*%

Many models have been developed for predicting the mixed-gas adsorp-
tion equilibria from pure component adsorption isotherms.”*>~2°! The FastIAS
model was used to predict binary adsorption equilibrium.”°~**) The basic

equations of IAS (Ideal Adsorbed Solution) is as given below,[zgl
P=P;’ 0
™ _ [P gp (1)
RT p—o P
1 N |: Xi j|
L o NS )
q ‘= L4i (P7)

Also, the Langmuir and the LAN + UNILAN model can be extended to
predict binary adsorption equilibrium. If competitive adsorption of n-butane
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and 1-butene takes place only on clay surface and Ag™ ion dispersed on clay
surface adsorbs only 1-butene, through 7-complexation, adsorption equilibria
of these two components can be represented by the following equations.

Qpbbpi
n-butane — T ~— 1. 3
dn-but 1+pr’ipi (3)
4pbopi qbc 1 + bepe’
-butene — T ~—~ 7 lni 4
q1-but 1+prlpl 1+ bope— “4)

In above equations, competitive adsorption of n-butane and 1-butene on the sur-
face of clay was represented with the extended Langmuir model. If the physical
adsorption constants of n-butane and 1-butene are same on the surface of clay,
the adsorbed amount of n-butane will increase linearly with partial pressure of
n-butane at constant total pressure.

Mathematical Model for Breakthrough

In the practical application of adsorbent, the situation is generally
complex. Thus, in order to develop a mathematical model for dynamics in
adsorber, the following assumptions are introduced.!'”*!

Ideal gas law applies.

The flow pattern is plug flow.

The system is in isothermal condition.

The mass transfer rate can be represented by a linear driving force
(LDF) rate expression.

N

Based on the above assumption, the mass balance for each component of
the mixture and the total mass balance were written as follows.
Component mass balance:

i i (1- s) RT 9g; (1- a) RT dg;
2% L 5
ot o Y 3z e PP u Z P o )
Total mass balance:
a(uC) (1- a) 8@
- =0 6
at Z Po ot ©)
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Mass transfer rates (LDF):

aq; _
o = k(q;k - q)
(7
D,
K=

where the rate coefficient, k, is an overall effective mass transfer coefficient as
a lumped parameter and « is a constant. The value of D,/ R? can be calculated
from the following equation. The value of D,/R* can be calculated from the

classical solution of the diffusion equation in a sphere.**!
m; 6 1 n2 1Dt
a:“ﬁ;ﬁwF—ﬁ— ®)

Boundary conditions of this system:

yi0, ) =yiin, T, 1) =Tyn, u0, t)=uy fort>0
Initial conditions:

yi(z, 00=0, T(z, 00=T, for0<z<L

To solve the above system of partial differential equations, the spatial deriva-
tives are divided using a backward difference scheme, and resulting ordinary
differential equations are solved with the GEAR method.

RESULTS AND DISCUSSION
Isotherms and Kinetics of Pure Components

Pure component adsorption isotherms of n-butane and 1-butene at each
temperature on AgNOs/clay are shown in Figs 3 and 4. Table 3 represents
absolute average deviation between experimental data and correlated results.
The experimental results of n-butane are well correlated with the Langmuir,
LRC, Toth, and D—A isotherm. However, in case of 1-butene, not all the
models give reasonable prediction performance. Models, which account for
the surface heterogeneity such as the LRC, Toth, and D—A, predict the
adsorbed amount of 1-butene quite well. But model derived under the assump-
tion of homogeneous surface, the Langmuir model, gives poor prediction
results. Considering the two distinctive adsorption sites of AgNOs;/clay,
i.e., the physical adsorption and 7-complexation sites, the above observation
is quite natural. The LAN 4 UNILAN model, which accounts for the physical

Copyright © Marcel Dekker, Inc. All rights reserved.
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16

25°C
50°C
80°C
100°C / e
—— Langmuir
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——- D-A
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|

0.0

0 200 400 600 800 1000 1200

Pressure [ mmHg ]

Figure 3. Equilibrium isotherm of n-butane (lines are fittings with isotherm model).

adsorption and 7-complexation with separate terms, predicts well the adsor-
bed amount of 1-butene because the model allows to apply different adsor-
ption energy for physical adsorption and w-complexation. Moreover, the
UNILAN term is essentially based on the assumption that the adsorbent has
uniform adsorption energy distribution. Because of the above characteristics
of the model, amount adsorbed of 1-butene was also well predicted by the
LAN + UNILAN model. Adsorbed amounts of I-butene and n-butane at
80°C and 900 mmHg were measured at 0.92 and 0.31 mmol/g, respectively.

Figure 5 represents adsorption ratio of ¢|_putene/¢n-butane fOr pure com-
ponent at each temperature. As shown in figure, adsorption ratio exponentially
decreases with pressure. It has the highest value at 80°C, but the differences of
adsorption ratio at 80°C and 100°C over 600 mmHg becomes smaller.
Thus, binary isotherm experiment was carried out at 80°C and 900 mmHg.
Table 4 represents adsorption ratio of ¢j_puene/¢n-butane at €ach temperature
and 900 mmHg.

Figure 6 shows the isosteric heat of adsorption of each component calcu-
lated from isotherm model using Van’t Hoff equation.”” The average heats of
adsorption for n-butane and 1-butene are found to be 6.6 and 13.3 kcal /mol,

Copyright © Marcel Dekker, Inc. All rights reserved.
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Figure 4. Equilibrium isotherm of 1-butene (lines are fittings with isotherm model).

respectively. As the adsorbed amount increases, the heat of adsorption
decreases since the site, which has higher adsorption energy, is occupied
first by the adsorbate.

Figure 7 shows the adsorption rates of 1-butene and n-butane on AgNO3/
clay at 80°C. For all uptake curves, diffusion of 1-butene and n-butane was
nearly completed within 15 min. The adsorption rate of 1-butene is slightly
faster than n-butane. The values of D,/R? of n-butane and 1-butene calculated
from Eq. (8) are 3.42 x 10~ % and 1.75 x 10_2/sec, respectively.

Binary Adsorption Equilibrium

Table 5 shows the results of binary isotherm experiment at 80°C and
900 mmHg. The adsorption ratio of 1-butene/n-butane is 14.87 and its selec-
tivity is 6.71 when mole fraction of 1-butene in gas phase is 0.689. Thus,
it shows enough selectivity to separate 1-butene from n-butane on
AgNOs/clay.
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Figure 5. Adsorption ratio of ¢j_putene/@n-butane Of pure component.

Figure 8 represents the comparison of experimental results and pre-
dicted ones for adsorbed amount and composition at 80°C and
900 mmHg. As the composition of 1-butene in gas phase is increased, the
curvatures of binary system are drastically changed. It is noted that the
adsorbed amount of n-butane is greatly diminished as mole fraction of
1-butene in gas phase increases from O to 0.1 and then decreases slowly

Table 4. Adsorption ratio of ¢ putene/¢n-butane at €ach

temperature and 900 mmHg.

Temperature (OC) ql—butene/qn—butane (7)
25 1.58
50 2.37
80 2.94

100 2.86
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Figure 6. Isosteric heat of adsorption of 1-butene and n-butane.

above 0.1. The TAS model with the Toth isotherm for pure component gives
the best prediction results for both the n-butane and 1-butene compared to
the other two models. The same IAS model with the Langmuir isotherm for
pure component did not predict the binary equilibrium well especially the
amount adsorbed of n-butane. In the case of the extended LAN + UNILAN
model, adsorbed amount of n-butane has a great deviation between experimen-
tal results and predicted ones. It is noted that the extended LAN + UNILAN
model can explain the adsorbed amount of 1-butene in binary system, however,
the extended Langmuir has a limitation to represent the adsorbed amount of n-
butane.

Adsorption Dynamics in Adsorber

IAS-Langmuir model is used to represent the multi-component adsorption
equilibrium, since it predicts binary system better than extended Langmuir +
UNILAN model and it is easier to computate dynamics than IAS-Toth. The

Copyright © Marcel Dekker, Inc. All rights reserved.
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Figure 7. Uptake rates (at P = 50 mmHg) of 1-butene and n-butane on AgNOs/clay
at 80°C.

isotherm parameters are listed in Table 6, and other parameters used in the
mathematical model are listed in Table 7. The comparison of experimental
data of breakthrough and theoretical results at various flow rates is shown
in Fig. 9. The change of flow rate has little effect on the forms of breakthrough
curves, and the breakthrough curves are steep enough to separate 1-butene
from n-butane. In order to produce high purity 1-butene, the adsorbed

Table 5. Binary experimental result at 80°C and 900 mmHg.

Yi-butene Xn-butane X1-butene dn-butane q1-butene q1-bulene/
(_) (_) (_) (mm01/g) (mmOI/g) Yn-butane (—)
0.000 1.000 0.000 0.284 0.000 0.000
0.002 0.657 0.343 0.172 0.090 0.523
0.065 0.302 0.698 0.114 0.262 2.307
0.270 0.118 0.882 0.073 0.545 7.471
0.689 0.063 0.937 0.054 0.805 14.870
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Figure 8. Binary adsorption equilibrium: (a) composition and (b) adsorbed amount.
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Table 6. Langmuir parameters of each component.

Langmuir parameter

gp (mmol/g) by (1/mmHg)
n-Butane 0.7923 7.2419 x 1074
1-Butene 1.0576 6.5645 x 1073

bed with feed mixture of 1-butene and n-butene is rinsed with some part of
product, and then desorbed to the product. It is noted that the mathematical
model using the IAS-Langmuir provides reasonable fits to the experimental
breakthrough curves, although deviation between experimental results and
predicted ones is slightly increasing as the feed flow rates decrease. From
the results, it can be concluded that the mathematical model proposed in
this study provides a good representation of the experimentally observed beha-
vior of breakthrough curves.

CONCLUSION

Newly developed adsorbent for C,4 olefin/paraffin separation was syn-
thesized by impregnating AgNO; on clay substrate. Equilibrium capacities
for 1-butene and n-butane at 80°C and 900 mmHg were measured at 0.92
and 0.31 mmol/g, respectively. The experimental data of n-butane were
correlated well with the Langmuir, LRC, Toth, and D—A. Also, LAN +
UNILAN model was adapted to represent both chemisorption and physical
adsorption of 1-butene. The average heats of adsorption for n-butane and
I-butene were found to be 6.6 and 13.3kcal/mol, respectively. Diffusion
of I-butene and n-butane on this sorbent was fast, with 100% uptake
reached within 15min. Binary isotherm experiment was carried out at
80°C and 900 mmHg. The adsorption ratio of 1-butene/n-butane was
found to be 14.87 and its selectivity 6.71 when mole fraction of 1-butene

Table 7. Characteristics of adsorption bed and adsorbent.

Bed ID. (cm) 2.593 Particle density (g/cm3) 1.7727
Bed O.D. (cm) 3.095 Void fraction (—) 0.4
Bed height (cm) 30.0 Porosity (—) 0.35
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Figure 9. Comparison of experimental data and simulated result of breakthrough
curve on AgNQOj3/clay with various flow rates (feed composition: 50% n-butane + 50%

1-butene; T = 80°C; P = 900 mmHg).

in gas phase was 0.689 in the binary system. The IAS model with Toth
isotherm for pure component gives the best prediction results for both
the n-butane and 1-butene compared to the other models used in the
study. Also, to confirm that 1-butene can be separated from n-butane on
AgNOs/clay, breakthrough test was carried out. The breakthrough curves
were steep enough to separate 1-butene from n-butane.

SYMBOLS
q adsorbed amount, mmol/g
qs saturation amount adsorbed, mmol/g
b, isotherm parameter, 1/mmHg
m, adsorbed amount at time #, mg
Moo adsorbed amount at equilibrium, mg
n LRC and Toth isotherm parameter
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SIS

~T%

as

v N

=

Pp

Toth parameter, overall effective mass transfer coefficient
heterogeneity parameter of energy distribution

time, sec

interstitial velocity, cm/sec

distance along the length of the column, cm

amount adsorbed of ith component, mmol/g

equilibrium amount adsobed, mmol/g

gas phase concentration, mmol / cm’, D— A model parameter
temperature, K

pressure, mmHg

saturation pressure at temperatures above the normal boiling
point

mole fraction of ith component in the gas phase

gas constant, intraparticle radius

mean of uniform energy distribution, void of packing
particle density, g/cm’
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